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Management Summary 
 
This report explores the role of data sharing technologies in advancing digitalization within the geothermal 
energy sector, with a focus on enabling secure and collaborative analytics across multiple stakeholders. 
In the geothermal sector, data is often fragmented due to privacy concerns, confidentiality, and 
competitive boundaries. The report provides an overview of several emerging approaches to address 
these challenges, including secure multi-party computation (SMPC) and federated learning (FL), each 
offering unique mechanisms to facilitate collaboration without compromising data ownership or 
confidentiality. 
 
A key value of these technologies lies in their ability to enable stakeholders, such as geothermal plant 
operators, equipment manufacturers, and researchers, to jointly analyze operational data while keeping 
sensitive information protected. This opens up opportunities to develop more accurate, data-driven 
insights into critical processes to improve efficiency and economics of the geothermal plants. By securely 
pooling knowledge from distributed sources, these approaches help overcome data sparsity and 
variability that often limit the performance of traditional models developed in isolation. A set of potential 
case studies is identified, illustrating how different stakeholders in the geothermal sector can securely 
share data and derive mutual benefits through collaborative analytics and predictive models. Beyond 
individual plant benefits, the integration of diverse datasets significantly strengthens the derived analytics 
and model generalizability and reliability, supporting better-informed decisions at both the operational 
and strategic levels. Collaborative learning across multiple environments allows for more robust 
forecasting, better understanding of degradation patterns, and improved equipment lifecycle 
management. 
 
This report highlights how secure data sharing technologies can serve as a foundation for collective 
innovation in geothermal energy. By enabling trust-based collaboration without sacrificing data control, 
they offer a path forward for digital transformation in the sector. The findings underline the potential for 
these technologies to not only optimize individual plant performance but also enhance system-wide 
efficiency and resilience, contributing meaningfully to the energy transition. 
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Introduction 
 
Geothermal energy is an emerging and increasingly important contributor to the global transition toward 
sustainable energy (IEA, 2021). As the demand for renewable heat and power continues to rise, 
geothermal systems are expected to play a more prominent role in achieving decarbonization goals. 
However, the sector is still navigating a steep learning curve. Its inherent complexitiessuch as  -  subsurface 
conditions, high upfront capital costs, and long development timelines – pose significant barriers to 
widespread adoption (Goetzl et al., 2021). Accelerating the learning process is therefore essential to 
improving the cost-competitiveness and reliability of geothermal energy. 
 
Efficient design and operation are key to reducing risks and enhancing the economic viability of 
geothermal projects (Wasch et al., 2019). These projects require informed decisions at every stage, from 
exploration and well placement to reservoir management and plant operation. Challenges such as 
resource uncertainty, scaling and corrosion, and pump degradation can severely impact performance. 
Leveraging high-quality data and learnings from past and ongoing projects can significantly support more 
effective decision-making and risk mitigation. 
 
The geothermal industry is becoming increasingly data-rich, benefitting from both the growing number of 
geothermal installations and the knowledge base of adjacent sectors like oil and gas (Weers and Anderson, 
2015; Vrijlandt et al., 2019). The availability of operational, geological, and performance-related data 
presents a significant opportunity to extract actionable insights – if these data sources can be effectively 
shared and utilized. Advances in digital technologies now make it possible to collect, process, and analyze 
data at a greater scale and frequency than ever before. 
 
Artificial intelligence (AI) and machine learning (ML) are emerging as powerful tools for enhancing 
geothermal operations. Applications range from subsurface modeling and drilling optimization to failure 
detection and predictive maintenance (Shoeibi Omrani et al., 2025). However, many geothermal sites 
individually generate limited volumes of data, resulting in machine learning models with limited accuracy 
and poor generalizability. This limitation underscores the importance of data-sharing approaches that can 
harness collective knowledge from multiple installations. 
 
Despite the recognized benefits of sharing data, practical implementation remains a key challenge. 
Concerns over confidentiality, intellectual property, and competitive advantage often discourage open 
data exchange. As a result, geothermal operators tend to work in silos, reducing opportunities for cross-
learning and sector-wide improvement. This lack of collaboration not only slows innovation but also 
contributes to inefficiencies in project development and operation. 
 
To address these issues, this report investigates the value of data-sharing technologies – particularly 
secure and decentralized machine learning approaches – for the geothermal sector. These technologies 
offer ways to collaborate on model development without transferring raw data, preserving privacy while 
still enabling shared learning. Approaches such as secure multi-party computation (SMPC) and federated 
learning (FL) allow organizations to build predictive models using distributed data across multiple 
stakeholders. These techniques can support advanced use cases such as equipment failure prediction, 
reservoir optimization, and emissions reduction – while maintaining data sovereignty. 
 
The report provides a detailed overview of available data-sharing frameworks, their technical foundations, 
and their applicability to the geothermal context. It also explores the broader opportunities and 
limitations of data-driven collaboration in the sector. As part of this work, a curated list of potential case 
studies is presented, outlining how different types of stakeholders – geothermal operators, service 
providers, and researchers – can jointly benefit from secure data sharing. While no specific technology is 
demonstrated in this report, the case study scenarios highlight real-world applications where 
collaborative data utilization could provide tangible value, such as predictive maintenance of pumps, 
cross-site performance benchmarking, or corrosion monitoring under different fluid chemistries. 
 
In conclusion, this report emphasizes that secure data-sharing technologies represent a critical enabler 
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for innovation, cost reduction, and performance optimization in the geothermal sector. By reducing 
barriers to collaboration, these approaches have the potential to significantly accelerate learning across 
projects and organizations. Moving forward, the implementation of digital solutions that respect data 
ownership while enabling collective intelligence will be key to scaling up geothermal energy as a reliable 
and competitive component of the global energy transition. 
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Data Sharing Technologies 
In this section, we go over relevant data-sharing technologies and elaborate on our selection, highlighting 
their advantages, limitations, and applicability to geothermal energy systems. Recent advancements in AI 
and ML offer solutions to challenges associated with data privacy and interoperability, enabling efficient 
models for performance prediction and predictive maintenance. Secure Multi-Party Computation (SMPC) 
and Federated Learning (FL) are two prominent technologies designed to address these issues by enabling 
collaborative learning without compromising data privacy. 
 

Secure Multi-Part Computation (SMPC) 
Secure Multi-Party Computation (SMPC) is a foundational cryptographic approach designed to enable 

multiple parties to collaboratively compute a function over their respective private datasets without 

revealing those datasets to one another. Initially introduced through Yao’s “Millionaires’ Problem” (Yao, 

1982), and further formalized by Goldreich (2004), SMPC has since evolved into a powerful framework for 

privacy-preserving data analysis and secure collaboration. At its core, SMPC guarantees that all parties 

learn only the final outcome of the computation, and nothing else about the other participants' inputs. 

This makes it particularly attractive in sectors where data sensitivity is crucial, e.g. in healthcare, finance, 

defense, and now increasingly, in energy systems and industrial applications. A schematic of the SMPC 

workflow is shown in Figure 1. 

 

Figure 1. Secure multi-party computation: each participant sharing their data with the computing party and computing 
party calculate intermediate results to be securely shared with each other. The figure is adapted from 
Torkzadehmahani et al., 2020 

 

One of SMPC’s key advantages lies in its ability to support distributed trust models: no central party or 

data protector is required, thereby reducing the risk of single-point breaches. In practice, SMPC has been 

applied to a range of privacy-critical use cases, such as federated biometric matching, encrypted genomics 

processing, and secure statistical reporting (Rahaman et al., 2024; Lindell et al., 2008). Recent research 

has also explored its potential in energy and infrastructure sectors, where competing stakeholders may 

wish to collaborate on model development without disclosing proprietary operational or design data 

(Gamiz et al., 2025; Bonawitz et al., 2017). 
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However, despite its promise, SMPC is often constrained by computational and communication 

overheads, particularly when applied to large-scale or real-time machine learning tasks. Protocols must 

frequently exchange encrypted messages or secret shares across all parties, which can become 

prohibitively slow and bandwidth-intensive as the model complexity or dataset size increases. For 

instance, secure training of deep learning models or even moderately complex ensemble models under 

SMPC typically incurs non-linear increases in latency and computation time, limiting scalability. 

Furthermore, the need for synchronous execution and trusted setup environments in many SMPC 

implementations adds additional engineering burdens. To mitigate these challenges, hybrid privacy-

preserving techniques are being proposed, such as combining SMPC with homomorphic encryption or 

trusted execution environments. These hybrid models attempt to leverage the fine-grained privacy 

control of SMPC while reducing the computational load by outsourcing certain operations or integrating 

lighter-weight privacy guarantees. 

 

In summary, SMPC remains a promising technology for privacy-preserving computation, offering 

unmatched security in collaborative scenarios where data confidentiality is non-negotiable. While its 

computational overhead currently limits its use in high-frequency and real-time settings, ongoing 

advancements in protocol efficiency, hardware acceleration, and hybrid architectures promise to extend 

its applicability across sectors where collaborative learning without data exposure is becoming 

increasingly critical. 

 

Federated Learning (FL) 
Federated Learning is a decentralized ML approach where models are trained collaboratively across 

multiple devices or institutions without centralizing the raw data. Instead, local models are trained on 

individual datasets and only model updates are shared with a central aggregator, preserving data privacy 

(Konečnỳ et al., 2016). A schematic of the federated learning workflow is shown in Figure 2. Federated 

learning enables the development of a highly accurate and robust model while ensuring data privacy. Each 

participant trains a local model on their own data, which remains secure and undisclosed. A global model, 

accessible to all participants, is continuously improved by integrating generic insights from multiple local 

models. This collaborative learning approach enhances the performance of individual models while 

complying with data security and privacy policies, ensuring that sensitive information is never shared.  

 
 

 
 

Figure 2. A schematic of the federated learning approach, developing a global model based on local models trained 
on the data of the stakeholder/clients. 
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Federated learning techniques are categorized into horizontal (sample-based) FL and vertical (feature-
based) FL. Both methods are schematically shown in Figure 3. In horizontal federated learning (HFL), 
participants possess datasets with the same features but different samples. Vertical federated learning 
applies when parties hold different features about the same entities. Each approach enables privacy-
preserving collaboration tailored to the structure of data distribution among stakeholders. 
 
Horizontal FL is used when multiple parties have datasets with the same features (attributes) but different 
samples. In geothermal plants, this often means several operators each have similar types of data (sensor 
time-series, well performance metrics, etc.) from different plants or wells. A horizontal FL setup allows 
these operators to train a shared model (for example, a performance monitoring model for pump failure 
prediction) on the aggregated experience of all their facilities without exposing any facility’s data. Vertical 
FL applies when different parties hold different features about the same sample entities. In geothermal 
contexts, this could occur if, for instance, an equipment OEM holds design specifications for a set of 
geothermal plants while the plant operators hold the operational performance data for those same plants 
– each party has distinct information on the same projects. Using vertical FL, they can jointly train models 
(e.g. relating design parameters to performance outcomes) by aligning on common identifiers (the plants) 
and keeping each party’s feature set private. Both horizontal and vertical FL facilitate cross-institutional 
collaboration. Horizontal FL tends to be common when many operators or sites wish to pool learning on 
a common task (each site acts as a client in the federation with an identical model structure), whereas 
vertical FL is ideal for combining complementary data from different stakeholders (e.g. geological survey 
data with drilling results). In all cases, a central server orchestrates the training rounds, aggregating model 
updates from clients.  
 
 

 
Figure 3. Schematic of two different type of federated learning (left) horizontal and (right) vertical federated learning 

 

Comparison between SMPC and FL 
Table 1 highlights key differences between Secure Multi-Party Computation (SMPC) and Federated 
Learning (FL) in terms of privacy, scalability, and communication. While SMPC offers strong cryptographic 
guarantees, it comes with high computational and communication overhead. FL, in contrast, enables 
efficient, privacy-conscious model training across decentralized data sources with lower resource 
requirements. For the geothermal industry, where data is distributed across multiple operators and sites, 
and real-time decision-making is important, FL seems to be the more suitable choice for enabling data 
sharing across the different stakeholders.  
 
In the following section, we present several case studies showcasing how Federated Learning can be 
applied in the geothermal industry to enable collaborative data sharing without compromising data 
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privacy. These examples highlight the practical value of FL in environments where sensitive operational 
data is distributed across multiple stakeholders. 
 

Table 1. Comparison of Secure Multi-Party Computation (SMPC) and Federated Learning (FL) with a focus on data 
privacy, scalability, and computational needs 

Aspect SMPC FL 

Data handling Encrypted or partitioned data 
shared across parties. 

Raw data stays local; only 
model updates shared. 

Computational overhead High computation and 
communication costs. 

Lower overhead; more efficient 
for ML tasks. 

Privacy  Strong cryptographic 
guarantees. 

Depends on techniques like 
differential privacy. 

Scalability Limited to few participants. Scales to thousands of devices. 

Use cases Secure joint analytics (e.g., 
finance, health). 

Distributed ML (e.g., mobile 
apps, energy systems). 
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Case Studies in the Geothermal Sector 
In the geothermal sector, data relevant to performance and reliability (e.g. well logs, chemical analyses, 
sensor readings, failure records) are often distributed across different companies and institutions. Data 
privacy and security are critical: operators may consider operational data confidential, and regulatory 
agencies enforce strict data protection. Data sharing technologies, and specifically federated learning, 
addresses these concerns by training models in a distributed manner: each participant (client) keeps their 
dataset local and only shares model parameters or gradients, not sensitive raw data. This approach has 
been shown to enable collaborative training across multiple clients “without sharing the involved training 
datasets,” effectively overcoming the lack of data sharing that hinders innovation in renewable energy. 
From a security standpoint, modern FL implementations can employ encrypted communications and 
secure aggregation protocols so that even the model updates exchanged are shielded from interception 
or misuse. This privacy-by-design approach builds trust among geothermal stakeholders, encouraging 
cross-institutional projects. For example, a regulatory agency or research consortium could act as a 
neutral FL coordinator, allowing several geothermal operators and OEMs (original equipment 
manufacturer) to train a joint model (for equipment health, reservoir behavior, etc.) that benefits all 
participants. Each party gains improved predictive capability from the broader data pool, while their 
proprietary data remain local and confidential. This collaborative paradigm shift can accelerate learning 
across the geothermal industry, where data scarcity at any single site has traditionally limited machine 
learning effectiveness. 
 
In this section, we provide a list of potential case studies that can be defined and implemented for data 
sharing in the geothermal sector. The case studies are categorized based on different disciplines, and 
within each section potential case studies for both horizontal and vertical FL is discussed. An overview of 
the case studies discussed in this report is demonstrated in Figure 4. 
 
 

 
Figure 4. Overview of potential use cases and areas in geothermal energy that can benefit from data sharing and 
federated learning (the figure is generated by AI) 
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Predictive Maintenance for Geothermal Plant Equipment 
Predictive maintenance is crucial for improving the uptime and safety of geothermal operations, especially 
in heating plants where equipment failures can cause costly heat supply interruptions. Key assets include 
electrical submersible pumps, surface/injection pumps, heat exchangers, separators, and filters. These 
components experience stress from high saline fluids, temperature cycling, and continuous operation, 
making proactive fault detection essential. Horizontal federated learning can dramatically enhance 
predictive maintenance in geothermal plants. Multiple operators each train a local model on their 
equipment sensor data (vibrations, pressures, temperatures, flow rates, etc.), and a central aggregator 
combines the learned patterns. Because all sites use a similar feature space (time-series sensor readings 
and maintenance logs), a horizontally federated model can learn from a much broader range of operating 
conditions than any single operator’s data alone. For instance, one plant’s pump might have experienced 
early-stage failure signatures that others have not, while another plant logged a rare motor failure mode, 
their data teach a more comprehensive failure-prediction model. FL ensures no raw sensor or failure data 
leaves the plant premises, easing concerns about exposing operational vulnerabilities or proprietary 
condition monitoring strategies. This collaborative approach directly supports predictive maintenance by 
yielding a model that can detect anomalies or predict failures with high confidence. In fact, federated 
anomaly detection models have achieved notable success in analogous industrial settings. For example, 
an FL-based pump monitoring model in a manufacturing context reached over 97% accuracy in detecting 
anomalies leading to failures (Ahn et al., 2023).  
 
Such performance underscores the potential for geothermal operators to achieve early fault prediction 
(e.g. foreseeing a pump seizure or clogging weeks in advance) by pooling their datasets without 
centralizing sensitive information. Horizontal FL is appropriate here because each operator’s data share 
the same structure – time-series sensor inputs and known failure events – and the value comes from 
aggregating many such examples. The result is improved maintenance scheduling, optimized spare parts 
management, and avoided unplanned shutdowns across the participating geothermal facilities. In short, 
FL enables a “virtual plant” of geothermal equipment to be monitored and learned from collectively, 
improving reliability industry-wide. Notably, if an OEM that manufactures the pumps also joins the 
federation with its test or design data, a vertical FL extension could enhance the model further; however, 
the primary paradigm for multi-operator predictive maintenance is horizontal FL. 
 

Corrosion and Scaling Mitigation 
Mineral scaling (precipitation of solids like calcite, silica, etc.) and corrosion in pipes and heat exchangers 
are pervasive problems in low-enthalpy geothermal operations involving sedimentary aquifers. The 
occurrence and severity of scaling and corrosion depend on a complex interplay of water chemistry 
(salinity, gas content, pH), temperature-pressure conditions, and mitigation measures (like chemical 
inhibitors). Operators typically collect water sample analyses and track when and where scaling or 
corrosion incidents occur (e.g. deposition in a reinjection well or thinning of a pipe wall). These data are 
often considered sensitive, as they can indicate a plant’s efficiency or the need for costly workovers. 
Horizontal FL offers a way for multiple geothermal operators (or operation and maintenance (O&M) 
contractors) to collaboratively train a model to predict scaling and corrosion risks, without revealing their 
raw chemical data or frequency of problems to other operators. In a FL setup, each operator could use 
their historical data – for instance, inputs like fluid composition, temperature drop in the heat exchanger, 
flow rate, and operational changes, with labels indicating if significant scaling or corrosion was observed 
under those conditions. A global model aggregated from these local models could learn generalizable 
patterns that any participant can then apply on their own site. By using horizontal FL, all participants share 
the same modeling objective (e.g. classification of “scaling likely” vs “not likely” for given conditions, or a 
regression of expected scale deposition rate) and feature space, but each with their site-specific examples.  
 
The benefit is a model that covers diverse geochemical regimes and operational strategies: one aquifer’s 
water chemistry might teach the model about sulfate scaling, while another provides examples of 
carbonate scaling, etc. The FL process maintains privacy and builds collective knowledge on mitigating 
these issues. This can inform operators when to adjust injection strategies or dosing of inhibitors. It also 
aids OEMs and chemical suppliers by highlighting conditions where their corrosion inhibitors succeed or 
not, without each company directly sharing proprietary performance data. In summary, federated 
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learning helps create a comprehensive corrosion and scaling risk model drawing on industry-wide 
experience. 
 

Plant Design and Optimization 
Designing efficient geothermal plants involves selecting and sizing equipment (well design, screen 
selection, pumps, heat exchangers, filters) and operational setpoints to match the reservoir 
characteristics. Historically, design optimization has been limited by the few number of projects and the 
fact that detailed performance data from existing plants are rarely shared openly. Vertical federated 
learning can bridge this gap by allowing collaboration between the entities that design geothermal plants 
and those that operate them. Consider an engineering firm or an OEM that has designed multiple 
geothermal installations (thus possessing features such as equipment specifications, well depths, 
intended flow rates, design temperatures), and the various plant operators who have data on the actual 
performance metrics of those installations (achieved flow, output temperatures, efficiency, downtime 
statistics, etc.). Individually, neither party can easily build a predictive model relating design decisions to 
outcomes across many projects, since they each hold only half of the picture. Using vertical FL, however, 
the design firm and the operators can train a joint model on the combined feature set without ever 
exchanging their proprietary data. They align on each geothermal plant (the common entity) as a sample: 
the design firm provides its design parameters for that plant as input features, while the operator provides 
the realized performance indicators as output labels. A training iteration involves computing partial model 
updates that are securely exchanged and merged by a coordinating server (perhaps run by a neutral 
research institute). Through this feature-sharing federated approach, the partners can develop models 
that, for example, predict the long-term performance or cost-efficiency of a plant given certain design 
parameters and reservoir properties. Such a model could help optimize future plant designs (choosing 
equipment sizes or configurations that on average perform best) and also help operators fine-tune 
existing plants. Vertical FL is critical here because the data is partitioned by feature between two groups 
– each plant’s full data is only revealed when the model is aggregated. This form of collaboration can also 
include researchers providing additional features (e.g. simulation-based performance metrics or 
geological context) and regulators interested in general design best-practices. Ultimately, federated 
learning in plant design leads to better design optimization guidelines and digital twins that are informed 
by real-world outcomes across the industry. 
 

Drilling Optimization 
Drilling geothermal wells in sedimentary basins can be challenging, often corresponds with issues like 
variable rock hardness, lost circulation zones, or wellbore instability (Shoeibi Omrani et al., 2025). Many 
factors affect drilling performance (rate of penetration, bit wear, occurrence of problems) including 
drilling parameters (weight on bit, rotary speed, mud properties) and geological conditions (lithology, 
formation pressures, depth). Gathering enough data to build predictive models for drilling optimization 
(e.g. to predict penetration rate or risk of complications) is challenging for any single operator, as 
individual companies drill a limited number of wells. Horizontal federated learning can enable cross-
company drilling data analysis in a privacy-preserving manner. In this scenario, each participating entity 
(could be geothermal operators, or drilling service companies) uses its historical drilling datasets to train 
a local model that predicts outcomes like penetration rate given certain parameters and geologic log data, 
or classifies problematic zones. The local models’ parameters are periodically sent to a central server and 
averaged (or otherwise aggregated) to form a global model that benefits from a much larger effective 
dataset encompassing wells from different fields and regions. Importantly, none of the raw drilling data 
(which may include sensitive information on drilling costs, techniques, or proprietary mud formulations) 
is shared, addressing competitive and confidentiality concerns. Using horizontal FL here is natural because 
all parties are training the same kind of model (e.g. a prediction model for drilling speed or torque) with 
the same set of input features (sensor readings, drilling settings, bit type, etc.), just drawn from different 
well sites. The aggregated model can capture trends that one company alone might miss. The 
collaborative model might also incorporate rare events, like unexpected high-pressure kicks or stuck pipe 
incidents, thereby improving drilling risk forecasting. This federated approach can be facilitated by 
industry consortia or research projects. By leveraging horizontal FL in drilling, the geothermal industry can 
reduce costs and improve safety, as improved models lead to shorter drilling times and more efficient 
processes. 
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Reservoir Characterization and Management 
Understanding and predicting subsurface reservoir properties is key for efficient geothermal production. 
Reservoir characterization tasks include predicting parameters like permeability, porosity, temperature 
distribution, and pressure decline, as well as understanding the aquifer’s response to long-term 
production and injection. Machine learning could assist these tasks (for instance, learning to estimate 
permeability from well logs), but geothermal operators often have limited well data per field (Okoroafor 
et al., 2022). Here, horizontal federated learning can play a transformative role by allowing multiple 
operators or field projects to collaboratively train reservoir models. Each operator may contribute a few 
data points – e.g. well log curves and core sample analyses paired with measured permeability or well test 
results. A shared model can be trained across all these data points via FL, greatly increasing the training 
sample size without centralizing the data. The horizontal FL approach fits because each data contributor 
has the same types of features (well log measurements, geological markers) and labels (reservoir 
properties or performance metrics) for different wells scattered across the region. The collaborative 
model effectively captures the collective geoscience knowledge of multiple sedimentary geothermal 
fields. 
 

Exploration and Resource Assessment 
Exploring for new geothermal resources or characterization of resources can be further enhanced with 
data sharing and federated learning. Successful exploration often requires correlating these large-scale 
datasets with ground-truth outcomes from existing wells (e.g. whether a test well actually encountered 
sufficient temperature and permeability). However, exploration data is typically fragmented. Federated 
learning provides a secure framework for combining these complementary data for improved exploration 
models. As an example for vertical FL, one party could serve as the holder of input features (for instance, 
seismic attributes or basin modeling results), while the exploration companies contribute the labels (e.g. 
“successful discovery” vs “dry well” or actual measured temperature and flow rate at those coordinates) 
for the locations where they have drilled. By aligning on common geographic locations or prospects, a 
vertical federated model can be trained to predict the probability of geothermal success or the expected 
resource quality in a target location. This FL-assisted exploration model has significant benefits. Data 
privacy and security are maintained, which is critical since exploration outcomes are often confidential 
and geophysical datasets can be proprietary or sensitive. At the same time, cross-institution collaboration 
is achieved: the public sector’s data and private sector’s data work in concert to improve understanding 
of geothermal potential. The resulting model might help identify high-potential sites (for leasing or further 
study) much more effectively than conventional methods, because it leverages far more data than any 
single entity possesses. 
An example of employing FL for resource assessment in petroleum fields is demonstrated by Peng et al. 
(2024). As an example for the vertical federated learning, an oil company and an exploration institute 
collaborate to develop a machine learning model for predicting reservoir productivity. The oil company, 
with access to labels and engineering data, acts as the active party, while the exploration institute, 
possessing only geological features, serves as the passive client aiming to build its own predictive model. 
The schematic of the workflow is presented in the paper, as shown in Figure 5. 
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Figure 5. Workflow for an example of vertical federated learning for resource assessment in geoenergy systems (figure 
adapted from Peng et al., 2024, arXiv:2404.18527) 

 
Beyond this specific arrangement, horizontal FL could also be applied among companies themselves (if 
multiple companies each have their own geophysical interpretations and drilling results, they could 
horizontally aggregate a model without involving a third party). In fact, a regulator might encourage 
several companies operating in the same basin to use FL to collectively de-risk exploration, improving the 
overall success rate of geothermal projects in the region. Such a move could lower costs and accelerate 
development of geothermal heating projects, aligning with policy goals, all while respecting competitive 
boundaries through privacy-preserving ML.  
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Challenges and Limitations 
Despite the potential and added value of using data sharing through SMPC or federated learning 
technologies in the geothermal sector, there are several limitations and challenges in deploying these 
digital technologies. One significant challenge is data heterogeneity and inconsistency. Geothermal data 
originates from a multitude of diverse sources, including drilling logs, seismic surveys, well tests, and 
production data. This data often varies considerably in format, quality, and measurement units, which 
makes standardization and integration across different datasets a challenging task. Complementing this, 
data scarcity and proprietary nature pose a substantial hurdle. High-quality geothermal data, particularly 
from deep wells, is not only scarce but also expensive to acquire. Companies frequently consider such 
data proprietary, leading to a reluctance to share it, which in turn limits the scope for collaborative efforts. 
 
Furthermore, confidentiality and security concerns are vital. Companies are understandably hesitant to 
share sensitive operational data due to intellectual property concerns, the risk of competitive 
disadvantages, and the ever-present threat of data breaches. This is compounded by a widespread lack of 
standardized data governance in the sector, meaning there are often no common protocols, legal 
frameworks, or ethical guidelines for data ownership, access, usage, and sharing among different 
organizations. This absence of clear rules contributes to interoperability issues, making it difficult to 
integrate data from various software platforms, sensors, and legacy systems that were not designed to 
communicate with each other. 
 
The technical complexity of FL or any data sharing implementation itself presents a challenge. Successfully 
implementing FL requires specialized technical expertise, robust IT infrastructure, and handling of model 
aggregation and privacy-preserving techniques to ensure data remains secure while insights are gained. 
Building trust and collaboration gaps among competitors or different stakeholders (industry, academia, 
government) is also crucial for successful data sharing and collaborative learning, but this often proves to 
be a significant challenge. 
 
For successful implementation of data sharing frameworks, ethical and operational considerations must 
be carefully addressed to ensure effective and responsible use. One concern is the lack of clarity in how 
decisions are made within data or model sharing frameworks. These models can be complex and difficult 
for participants to fully understand, making it challenging to detect biases or assess model decisions. Even 
with advanced predictive capabilities, the outcomes may not provide actionable insights for each 
individual participant. In addition, shared datasets might not be representative of the entire geothermal 
landscape, leading to biased models if certain geological settings or operational conditions are 
underrepresented. To mitigate this, it is crucial to adopt practices that improve the explainability of the 
models, allowing stakeholders to trust the process and results. 
 
A critical concern in federated learning is the risk of untrustworthy participant behavior. Since FL involves 
collaboration across multiple sites, there is the potential for individuals or organizations to manipulate or 
falsify local data, or attempt to reverse-engineer shared parameters (adversarial attacks). Such actions 
could severely compromise the integrity, fairness, and security of the entire system, especially in critical 
infrastructure sectors like geothermal. To mitigate this, clear participation agreements, technical 
safeguards (such as differential privacy, secure aggregation, and anomaly detection), and a robust 
governance framework are essential. These should be accompanied by transparent auditing processes 
and accountability mechanisms to ensure ethical compliance and build trust among stakeholders. 
 
Moreover, model drift and generalizability need to be assessed. Geothermal reservoirs are highly site-
specific, meaning models trained on federated data might struggle with generalizability to new, unseen 
sites if the underlying geological characteristics vary significantly. This is closely related to data bias and 
skewness. As data originates from various geothermal sites, imbalances may arise, influencing model 
outcomes. If certain participants are selectively included or data from some sites is overrepresented, it 
could result in skewed or inaccurate models. Ensuring fair inclusion of all relevant parties in the 
collaboration is crucial for minimizing bias and producing reliable models. The complex issue of attribution 
and incentivization also needs to be addressed, as determining fair attribution for contributions to a 
shared model and creating incentives for participation can be complex, especially when data sharing is 
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not mandatory. 
 
Ownership of shared data and/or trained models needs to be clarified at very early stage of the 
development. When data is contributed to a shared pool or used to train a federated model, clarifying 
who maintains ownership of the original shared data, the derived insights, and the resulting trained 
models becomes crucial. Establishing clear intellectual property rights and usage agreements among all 
participants is essential to prevent disputes and encourage participation in collaborative efforts.  
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Conclusions and Outlook 
Data sharing in the geothermal sector has the potential to revolutionize how insights are generated across 
exploration, characterization, drilling, and operational stages. By enabling the aggregation of knowledge 
from geographically diverse fields and systems, collaborative modeling (especially when enabled by 
privacy-preserving frameworks like federated learning) can produce highly accurate and generalizable 
models. These global models outperform those trained on isolated, site-specific datasets by capturing a 
broader range of geological and operational scenarios. This leads to improved predictive capabilities, 
allowing for better-informed decisions in resource assessment, maintenance planning, and operational 
optimization, even for operators with limited data or underrepresented geological conditions. As 
demonstrated, such global models are essential in bridging data silos and reducing the reliance on large 
local datasets, particularly in mid- and low-enthalpy geothermal systems where project-specific data may 
be sparse. 
 
From the technological perspective, both Secure Multi-Party Computation and Federated Learning offer 
valuable approaches to privacy-preserving data collaboration. However, given the distributed nature of 
geothermal operations, the need for scalability, and the focus on model training rather than secure 
computation, FL emerges as the more practical and suitable technique for the geothermal industry. 
 
Moreover, federated learning enables this high level of model performance without compromising the 
confidentiality of sensitive data, addressing one of the key barriers to collaboration in the industry. 
Through decentralized training, stakeholders can jointly develop robust predictive tools while retaining 
control over their proprietary datasets. This advances trust and facilitates wider participation, 
encouraging innovation across the sector. The enhanced generalization capabilities of shared models 
reduce uncertainties in geothermal development and operations, ultimately leading to increased 
efficiency, reduced costs, and improved sustainability. As most of the sectors, including energy sector, 
move towards more data-driven decision-making, the added value of data sharing will be a basis of future 
competitiveness and resilience in geothermal energy systems. 
 
The first step toward realizing the benefits of data sharing through federated learning is the establishment 
of a trusted collaborative framework among stakeholders. This includes geothermal operators, equipment 
manufacturers, research institutions, and regulators, all agreeing on a shared vision for secure and ethical 
data collaboration. Key components of this framework should include standardized data formats, clear 
governance protocols, participation agreements outlining data use and protection, and the deployment 
of technical safeguards such as secure aggregation and anomaly detection. Pilot projects should be 
launched to validate the framework in a controlled environment, demonstrating both the feasibility and 
the benefits of federated learning in real-world geothermal contexts. These initial pilots will help build 
confidence in the approach, refine governance mechanisms, and lay the groundwork for broader adoption 
across the sector. 
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