Sector Learning with
Data Sharing — Case
Studies for the

Geothermal Industry
Version 23.05.2025




nieuwe warmte nu

Sector Learning with Data Sharing — Case
Studies for the Geothermal Industry

Authors: Reviewers:
Company: TNO Company: TNO
From: Pejman Shoeibi Omrani From: Ryvo Octaviano,
Laura Precupanu
E-mail: pejman.shoeibiomrani@tno.nl E-mail: ryvo.octaviano@tno.nl,
laura.precupanu@tno.nl
Project Laura Precupanu,

coordinator laura.precupanu@tno.nl

Subject: Sector Learning with Data Sharing — Case Studies for the Geothermal
Industry




This project is executed with funding of the National Growth Fund of the Ministry of Economic Affairs,
implemented by the Netherlands Enterprise Agency. The specific funding for project Data gedreven
optimalisatie van aardwarmte systemen (NWNI10005) concerns the funding rules 2022.

30f20



Management Summary

This report explores the role of data sharing technologies in advancing digitalization within the geothermal
energy sector, with a focus on enabling secure and collaborative analytics across multiple stakeholders.
In the geothermal sector, data is often fragmented due to privacy concerns, confidentiality, and
competitive boundaries. The report provides an overview of several emerging approaches to address
these challenges, including secure multi-party computation (SMPC) and federated learning (FL), each
offering unique mechanisms to facilitate collaboration without compromising data ownership or
confidentiality.

A key value of these technologies lies in their ability to enable stakeholders, such as geothermal plant
operators, equipment manufacturers, and researchers, to jointly analyze operational data while keeping
sensitive information protected. This opens up opportunities to develop more accurate, data-driven
insights into critical processes to improve efficiency and economics of the geothermal plants. By securely
pooling knowledge from distributed sources, these approaches help overcome data sparsity and
variability that often limit the performance of traditional models developed in isolation. A set of potential
case studies is identified, illustrating how different stakeholders in the geothermal sector can securely
share data and derive mutual benefits through collaborative analytics and predictive models. Beyond
individual plant benefits, the integration of diverse datasets significantly strengthens the derived analytics
and model generalizability and reliability, supporting better-informed decisions at both the operational
and strategic levels. Collaborative learning across multiple environments allows for more robust
forecasting, better understanding of degradation patterns, and improved equipment lifecycle
management.

This report highlights how secure data sharing technologies can serve as a foundation for collective
innovation in geothermal energy. By enabling trust-based collaboration without sacrificing data control,
they offer a path forward for digital transformation in the sector. The findings underline the potential for
these technologies to not only optimize individual plant performance but also enhance system-wide
efficiency and resilience, contributing meaningfully to the energy transition.
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Introduction

Geothermal energy is an emerging and increasingly important contributor to the global transition toward
sustainable energy (IEA, 2021). As the demand for renewable heat and power continues to rise,
geothermal systems are expected to play a more prominent role in achieving decarbonization goals.
However, the sector is still navigating a steep learning curve. Its inherent complexitiessuch as - subsurface
conditions, high upfront capital costs, and long development timelines — pose significant barriers to
widespread adoption (Goetzl et al., 2021). Accelerating the learning process is therefore essential to
improving the cost-competitiveness and reliability of geothermal energy.

Efficient design and operation are key to reducing risks and enhancing the economic viability of
geothermal projects (Wasch et al., 2019). These projects require informed decisions at every stage, from
exploration and well placement to reservoir management and plant operation. Challenges such as
resource uncertainty, scaling and corrosion, and pump degradation can severely impact performance.
Leveraging high-quality data and learnings from past and ongoing projects can significantly support more
effective decision-making and risk mitigation.

The geothermal industry is becoming increasingly data-rich, benefitting from both the growing number of
geothermal installations and the knowledge base of adjacent sectors like oil and gas (Weers and Anderson,
2015; Vrijlandt et al., 2019). The availability of operational, geological, and performance-related data
presents a significant opportunity to extract actionable insights — if these data sources can be effectively
shared and utilized. Advances in digital technologies now make it possible to collect, process, and analyze
data at a greater scale and frequency than ever before.

Artificial intelligence (Al) and machine learning (ML) are emerging as powerful tools for enhancing
geothermal operations. Applications range from subsurface modeling and drilling optimization to failure
detection and predictive maintenance (Shoeibi Omrani et al., 2025). However, many geothermal sites
individually generate limited volumes of data, resulting in machine learning models with limited accuracy
and poor generalizability. This limitation underscores the importance of data-sharing approaches that can
harness collective knowledge from multiple installations.

Despite the recognized benefits of sharing data, practical implementation remains a key challenge.
Concerns over confidentiality, intellectual property, and competitive advantage often discourage open
data exchange. As a result, geothermal operators tend to work in silos, reducing opportunities for cross-
learning and sector-wide improvement. This lack of collaboration not only slows innovation but also
contributes to inefficiencies in project development and operation.

To address these issues, this report investigates the value of data-sharing technologies — particularly
secure and decentralized machine learning approaches — for the geothermal sector. These technologies
offer ways to collaborate on model development without transferring raw data, preserving privacy while
still enabling shared learning. Approaches such as secure multi-party computation (SMPC) and federated
learning (FL) allow organizations to build predictive models using distributed data across multiple
stakeholders. These techniques can support advanced use cases such as equipment failure prediction,
reservoir optimization, and emissions reduction — while maintaining data sovereignty.

The report provides a detailed overview of available data-sharing frameworks, their technical foundations,
and their applicability to the geothermal context. It also explores the broader opportunities and
limitations of data-driven collaboration in the sector. As part of this work, a curated list of potential case
studies is presented, outlining how different types of stakeholders — geothermal operators, service
providers, and researchers — can jointly benefit from secure data sharing. While no specific technology is
demonstrated in this report, the case study scenarios highlight real-world applications where
collaborative data utilization could provide tangible value, such as predictive maintenance of pumps,
cross-site performance benchmarking, or corrosion monitoring under different fluid chemistries.

In conclusion, this report emphasizes that secure data-sharing technologies represent a critical enabler
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for innovation, cost reduction, and performance optimization in the geothermal sector. By reducing
barriers to collaboration, these approaches have the potential to significantly accelerate learning across
projects and organizations. Moving forward, the implementation of digital solutions that respect data
ownership while enabling collective intelligence will be key to scaling up geothermal energy as a reliable
and competitive component of the global energy transition.
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Data Sharing Technologies

In this section, we go over relevant data-sharing technologies and elaborate on our selection, highlighting
their advantages, limitations, and applicability to geothermal energy systems. Recent advancements in Al
and ML offer solutions to challenges associated with data privacy and interoperability, enabling efficient
models for performance prediction and predictive maintenance. Secure Multi-Party Computation (SMPC)
and Federated Learning (FL) are two prominent technologies designed to address these issues by enabling
collaborative learning without compromising data privacy.

Secure Multi-Part Computation (SMPC)

Secure Multi-Party Computation (SMPC) is a foundational cryptographic approach designed to enable
multiple parties to collaboratively compute a function over their respective private datasets without
revealing those datasets to one another. Initially introduced through Yao’s “Millionaires’ Problem” (Yao,
1982), and further formalized by Goldreich (2004), SMPC has since evolved into a powerful framework for
privacy-preserving data analysis and secure collaboration. At its core, SMPC guarantees that all parties
learn only the final outcome of the computation, and nothing else about the other participants' inputs.
This makes it particularly attractive in sectors where data sensitivity is crucial, e.g. in healthcare, finance,
defense, and now increasingly, in energy systems and industrial applications. A schematic of the SMPC
workflow is shown in Figure 1.

Participants Secret Sharing

1 Computing Parties

Final Results

Secret
| (Intermediate)
Results

Figure 1. Secure multi-party computation: each participant sharing their data with the computing party and computing
party calculate intermediate results to be securely shared with each other. The figure is adapted from
Torkzadehmahani et al., 2020

One of SMPC'’s key advantages lies in its ability to support distributed trust models: no central party or
data protector is required, thereby reducing the risk of single-point breaches. In practice, SMPC has been
applied to a range of privacy-critical use cases, such as federated biometric matching, encrypted genomics
processing, and secure statistical reporting (Rahaman et al., 2024; Lindell et al., 2008). Recent research
has also explored its potential in energy and infrastructure sectors, where competing stakeholders may
wish to collaborate on model development without disclosing proprietary operational or design data
(Gamiz et al., 2025; Bonawitz et al., 2017).
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However, despite its promise, SMPC is often constrained by computational and communication
overheads, particularly when applied to large-scale or real-time machine learning tasks. Protocols must
frequently exchange encrypted messages or secret shares across all parties, which can become
prohibitively slow and bandwidth-intensive as the model complexity or dataset size increases. For
instance, secure training of deep learning models or even moderately complex ensemble models under
SMPC typically incurs non-linear increases in latency and computation time, limiting scalability.
Furthermore, the need for synchronous execution and trusted setup environments in many SMPC
implementations adds additional engineering burdens. To mitigate these challenges, hybrid privacy-
preserving techniques are being proposed, such as combining SMPC with homomorphic encryption or
trusted execution environments. These hybrid models attempt to leverage the fine-grained privacy
control of SMPC while reducing the computational load by outsourcing certain operations or integrating
lighter-weight privacy guarantees.

In summary, SMPC remains a promising technology for privacy-preserving computation, offering
unmatched security in collaborative scenarios where data confidentiality is non-negotiable. While its
computational overhead currently limits its use in high-frequency and real-time settings, ongoing
advancements in protocol efficiency, hardware acceleration, and hybrid architectures promise to extend
its applicability across sectors where collaborative learning without data exposure is becoming
increasingly critical.

Federated Learning (FL)

Federated Learning is a decentralized ML approach where models are trained collaboratively across
multiple devices or institutions without centralizing the raw data. Instead, local models are trained on
individual datasets and only model updates are shared with a central aggregator, preserving data privacy
(Konecny et al., 2016). A schematic of the federated learning workflow is shown in Figure 2. Federated
learning enables the development of a highly accurate and robust model while ensuring data privacy. Each
participant trains a local model on their own data, which remains secure and undisclosed. A global model,
accessible to all participants, is continuously improved by integrating generic insights from multiple local
models. This collaborative learning approach enhances the performance of individual models while
complying with data security and privacy policies, ensuring that sensitive information is never shared.

.. Local Local
Y model A model B

l‘.~\
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DAGIREYY
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P TS
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model C model D

Figure 2. A schematic of the federated learning approach, developing a global model based on local models trained
on the data of the stakeholder/clients.
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Federated learning techniques are categorized into horizontal (sample-based) FL and vertical (feature-
based) FL. Both methods are schematically shown in Figure 3. In horizontal federated learning (HFL),
participants possess datasets with the same features but different samples. Vertical federated learning
applies when parties hold different features about the same entities. Each approach enables privacy-
preserving collaboration tailored to the structure of data distribution among stakeholders.

Horizontal FL is used when multiple parties have datasets with the same features (attributes) but different
samples. In geothermal plants, this often means several operators each have similar types of data (sensor
time-series, well performance metrics, etc.) from different plants or wells. A horizontal FL setup allows
these operators to train a shared model (for example, a performance monitoring model for pump failure
prediction) on the aggregated experience of all their facilities without exposing any facility’s data. Vertical
FL applies when different parties hold different features about the same sample entities. In geothermal
contexts, this could occur if, for instance, an equipment OEM holds design specifications for a set of
geothermal plants while the plant operators hold the operational performance data for those same plants
—each party has distinct information on the same projects. Using vertical FL, they can jointly train models
(e.g. relating design parameters to performance outcomes) by aligning on common identifiers (the plants)
and keeping each party’s feature set private. Both horizontal and vertical FL facilitate cross-institutional
collaboration. Horizontal FL tends to be common when many operators or sites wish to pool learning on
a common task (each site acts as a client in the federation with an identical model structure), whereas
vertical FL is ideal for combining complementary data from different stakeholders (e.g. geological survey
data with drilling results). In all cases, a central server orchestrates the training rounds, aggregating model
updates from clients.

Horizontal Federated Learning Vertical Federated Learning

Data FromA Data FromB

Features Labels

DataFromA

Features Features Labels

Features Labels

DataFromB

Figure 3. Schematic of two different type of federated learning (left) horizontal and (right) vertical federated learning

Comparison between SMPC and FL

Table 1 highlights key differences between Secure Multi-Party Computation (SMPC) and Federated
Learning (FL) in terms of privacy, scalability, and communication. While SMPC offers strong cryptographic
guarantees, it comes with high computational and communication overhead. FL, in contrast, enables
efficient, privacy-conscious model training across decentralized data sources with lower resource
requirements. For the geothermal industry, where data is distributed across multiple operators and sites,
and real-time decision-making is important, FL seems to be the more suitable choice for enabling data
sharing across the different stakeholders.

In the following section, we present several case studies showcasing how Federated Learning can be
applied in the geothermal industry to enable collaborative data sharing without compromising data
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privacy. These examples highlight the practical value of FL in environments where sensitive operational

data is distributed across multiple stakeholders.

Table 1. Comparison of Secure Multi-Party Computation (SMPC) and Federated Learning (FL) with a focus on data
privacy, scalability, and computational needs

Aspect SMPC

Data handling Encrypted or partitioned data
shared across parties.

High computation and
communication costs.
guarantees.

Secure joint analytics (e.g.,
finance, health).
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Scalability Limited to few participants.

FL

Raw data stays local; only
model updates shared.

Lower overhead; more efficient
for ML tasks.

Depends on techniques like
differential privacy.

Scales to thousands of devices.
Distributed ML (e.g., mobile
apps, energy systems).



Case Studies in the Geothermal Sector

In the geothermal sector, data relevant to performance and reliability (e.g. well logs, chemical analyses,
sensor readings, failure records) are often distributed across different companies and institutions. Data
privacy and security are critical: operators may consider operational data confidential, and regulatory
agencies enforce strict data protection. Data sharing technologies, and specifically federated learning,
addresses these concerns by training models in a distributed manner: each participant (client) keeps their
dataset local and only shares model parameters or gradients, not sensitive raw data. This approach has
been shown to enable collaborative training across multiple clients “without sharing the involved training
datasets,” effectively overcoming the lack of data sharing that hinders innovation in renewable energy.
From a security standpoint, modern FL implementations can employ encrypted communications and
secure aggregation protocols so that even the model updates exchanged are shielded from interception
or misuse. This privacy-by-design approach builds trust among geothermal stakeholders, encouraging
cross-institutional projects. For example, a regulatory agency or research consortium could act as a
neutral FL coordinator, allowing several geothermal operators and OEMs (original equipment
manufacturer) to train a joint model (for equipment health, reservoir behavior, etc.) that benefits all
participants. Each party gains improved predictive capability from the broader data pool, while their
proprietary data remain local and confidential. This collaborative paradigm shift can accelerate learning
across the geothermal industry, where data scarcity at any single site has traditionally limited machine
learning effectiveness.

In this section, we provide a list of potential case studies that can be defined and implemented for data
sharing in the geothermal sector. The case studies are categorized based on different disciplines, and
within each section potential case studies for both horizontal and vertical FL is discussed. An overview of
the case studies discussed in this report is demonstrated in Figure 4.

‘e
RESOURCE
CHARACTERIZATION

EXPLORATION
AND ASSESSMENT

]
I FEDERATED
HEAT EXTRACTION LEARNING

PRODUCTION
AND UTILIZATION AND OPERATION
PREDICTIVE
MAINTENANCE

Figure 4. Overview of potential use cases and areas in geothermal energy that can benefit from data sharing and
federated learning (the figure is generated by Al)
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Predictive Maintenance for Geothermal Plant Equipment

Predictive maintenance is crucial for improving the uptime and safety of geothermal operations, especially
in heating plants where equipment failures can cause costly heat supply interruptions. Key assets include
electrical submersible pumps, surface/injection pumps, heat exchangers, separators, and filters. These
components experience stress from high saline fluids, temperature cycling, and continuous operation,
making proactive fault detection essential. Horizontal federated learning can dramatically enhance
predictive maintenance in geothermal plants. Multiple operators each train a local model on their
equipment sensor data (vibrations, pressures, temperatures, flow rates, etc.), and a central aggregator
combines the learned patterns. Because all sites use a similar feature space (time-series sensor readings
and maintenance logs), a horizontally federated model can learn from a much broader range of operating
conditions than any single operator’s data alone. For instance, one plant’s pump might have experienced
early-stage failure signatures that others have not, while another plant logged a rare motor failure mode,
their data teach a more comprehensive failure-prediction model. FL ensures no raw sensor or failure data
leaves the plant premises, easing concerns about exposing operational vulnerabilities or proprietary
condition monitoring strategies. This collaborative approach directly supports predictive maintenance by
yielding a model that can detect anomalies or predict failures with high confidence. In fact, federated
anomaly detection models have achieved notable success in analogous industrial settings. For example,
an FL-based pump monitoring model in a manufacturing context reached over 97% accuracy in detecting
anomalies leading to failures (Ahn et al., 2023).

Such performance underscores the potential for geothermal operators to achieve early fault prediction
(e.g. foreseeing a pump seizure or clogging weeks in advance) by pooling their datasets without
centralizing sensitive information. Horizontal FL is appropriate here because each operator’s data share
the same structure — time-series sensor inputs and known failure events — and the value comes from
aggregating many such examples. The result is improved maintenance scheduling, optimized spare parts
management, and avoided unplanned shutdowns across the participating geothermal facilities. In short,
FL enables a “virtual plant” of geothermal equipment to be monitored and learned from collectively,
improving reliability industry-wide. Notably, if an OEM that manufactures the pumps also joins the
federation with its test or design data, a vertical FL extension could enhance the model further; however,
the primary paradigm for multi-operator predictive maintenance is horizontal FL.

Corrosion and Scaling Mitigation

Mineral scaling (precipitation of solids like calcite, silica, etc.) and corrosion in pipes and heat exchangers
are pervasive problems in low-enthalpy geothermal operations involving sedimentary aquifers. The
occurrence and severity of scaling and corrosion depend on a complex interplay of water chemistry
(salinity, gas content, pH), temperature-pressure conditions, and mitigation measures (like chemical
inhibitors). Operators typically collect water sample analyses and track when and where scaling or
corrosion incidents occur (e.g. deposition in a reinjection well or thinning of a pipe wall). These data are
often considered sensitive, as they can indicate a plant’s efficiency or the need for costly workovers.
Horizontal FL offers a way for multiple geothermal operators (or operation and maintenance (0O&M)
contractors) to collaboratively train a model to predict scaling and corrosion risks, without revealing their
raw chemical data or frequency of problems to other operators. In a FL setup, each operator could use
their historical data — for instance, inputs like fluid composition, temperature drop in the heat exchanger,
flow rate, and operational changes, with labels indicating if significant scaling or corrosion was observed
under those conditions. A global model aggregated from these local models could learn generalizable
patterns that any participant can then apply on their own site. By using horizontal FL, all participants share
the same modeling objective (e.g. classification of “scaling likely” vs “not likely” for given conditions, or a
regression of expected scale deposition rate) and feature space, but each with their site-specific examples.

The benefit is a model that covers diverse geochemical regimes and operational strategies: one aquifer’s
water chemistry might teach the model about sulfate scaling, while another provides examples of
carbonate scaling, etc. The FL process maintains privacy and builds collective knowledge on mitigating
these issues. This can inform operators when to adjust injection strategies or dosing of inhibitors. It also
aids OEMs and chemical suppliers by highlighting conditions where their corrosion inhibitors succeed or
not, without each company directly sharing proprietary performance data. In summary, federated
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learning helps create a comprehensive corrosion and scaling risk model drawing on industry-wide
experience.

Plant Design and Optimization

Designing efficient geothermal plants involves selecting and sizing equipment (well design, screen
selection, pumps, heat exchangers, filters) and operational setpoints to match the reservoir
characteristics. Historically, design optimization has been limited by the few number of projects and the
fact that detailed performance data from existing plants are rarely shared openly. Vertical federated
learning can bridge this gap by allowing collaboration between the entities that design geothermal plants
and those that operate them. Consider an engineering firm or an OEM that has designed multiple
geothermal installations (thus possessing features such as equipment specifications, well depths,
intended flow rates, design temperatures), and the various plant operators who have data on the actual
performance metrics of those installations (achieved flow, output temperatures, efficiency, downtime
statistics, etc.). Individually, neither party can easily build a predictive model relating design decisions to
outcomes across many projects, since they each hold only half of the picture. Using vertical FL, however,
the design firm and the operators can train a joint model on the combined feature set without ever
exchanging their proprietary data. They align on each geothermal plant (the common entity) as a sample:
the design firm provides its design parameters for that plant as input features, while the operator provides
the realized performance indicators as output labels. A training iteration involves computing partial model
updates that are securely exchanged and merged by a coordinating server (perhaps run by a neutral
research institute). Through this feature-sharing federated approach, the partners can develop models
that, for example, predict the long-term performance or cost-efficiency of a plant given certain design
parameters and reservoir properties. Such a model could help optimize future plant designs (choosing
equipment sizes or configurations that on average perform best) and also help operators fine-tune
existing plants. Vertical FL is critical here because the data is partitioned by feature between two groups
—each plant’s full data is only revealed when the model is aggregated. This form of collaboration can also
include researchers providing additional features (e.g. simulation-based performance metrics or
geological context) and regulators interested in general design best-practices. Ultimately, federated
learning in plant design leads to better design optimization guidelines and digital twins that are informed
by real-world outcomes across the industry.

Drilling Optimization

Drilling geothermal wells in sedimentary basins can be challenging, often corresponds with issues like
variable rock hardness, lost circulation zones, or wellbore instability (Shoeibi Omrani et al., 2025). Many
factors affect drilling performance (rate of penetration, bit wear, occurrence of problems) including
drilling parameters (weight on bit, rotary speed, mud properties) and geological conditions (lithology,
formation pressures, depth). Gathering enough data to build predictive models for drilling optimization
(e.g. to predict penetration rate or risk of complications) is challenging for any single operator, as
individual companies drill a limited number of wells. Horizontal federated learning can enable cross-
company drilling data analysis in a privacy-preserving manner. In this scenario, each participating entity
(could be geothermal operators, or drilling service companies) uses its historical drilling datasets to train
a local model that predicts outcomes like penetration rate given certain parameters and geologic log data,
or classifies problematic zones. The local models’ parameters are periodically sent to a central server and
averaged (or otherwise aggregated) to form a global model that benefits from a much larger effective
dataset encompassing wells from different fields and regions. Importantly, none of the raw drilling data
(which may include sensitive information on drilling costs, techniques, or proprietary mud formulations)
is shared, addressing competitive and confidentiality concerns. Using horizontal FL here is natural because
all parties are training the same kind of model (e.g. a prediction model for drilling speed or torque) with
the same set of input features (sensor readings, drilling settings, bit type, etc.), just drawn from different
well sites. The aggregated model can capture trends that one company alone might miss. The
collaborative model might also incorporate rare events, like unexpected high-pressure kicks or stuck pipe
incidents, thereby improving drilling risk forecasting. This federated approach can be facilitated by
industry consortia or research projects. By leveraging horizontal FL in drilling, the geothermal industry can
reduce costs and improve safety, as improved models lead to shorter drilling times and more efficient
processes.
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Reservoir Characterization and Management

Understanding and predicting subsurface reservoir properties is key for efficient geothermal production.
Reservoir characterization tasks include predicting parameters like permeability, porosity, temperature
distribution, and pressure decline, as well as understanding the aquifer’s response to long-term
production and injection. Machine learning could assist these tasks (for instance, learning to estimate
permeability from well logs), but geothermal operators often have limited well data per field (Okoroafor
et al., 2022). Here, horizontal federated learning can play a transformative role by allowing multiple
operators or field projects to collaboratively train reservoir models. Each operator may contribute a few
data points —e.g. well log curves and core sample analyses paired with measured permeability or well test
results. A shared model can be trained across all these data points via FL, greatly increasing the training
sample size without centralizing the data. The horizontal FL approach fits because each data contributor
has the same types of features (well log measurements, geological markers) and labels (reservoir
properties or performance metrics) for different wells scattered across the region. The collaborative
model effectively captures the collective geoscience knowledge of multiple sedimentary geothermal
fields.

Exploration and Resource Assessment

Exploring for new geothermal resources or characterization of resources can be further enhanced with
data sharing and federated learning. Successful exploration often requires correlating these large-scale
datasets with ground-truth outcomes from existing wells (e.g. whether a test well actually encountered
sufficient temperature and permeability). However, exploration data is typically fragmented. Federated
learning provides a secure framework for combining these complementary data for improved exploration
models. As an example for vertical FL, one party could serve as the holder of input features (for instance,
seismic attributes or basin modeling results), while the exploration companies contribute the labels (e.g.
“successful discovery” vs “dry well” or actual measured temperature and flow rate at those coordinates)
for the locations where they have drilled. By aligning on common geographic locations or prospects, a
vertical federated model can be trained to predict the probability of geothermal success or the expected
resource quality in a target location. This FL-assisted exploration model has significant benefits. Data
privacy and security are maintained, which is critical since exploration outcomes are often confidential
and geophysical datasets can be proprietary or sensitive. At the same time, cross-institution collaboration
is achieved: the public sector’s data and private sector’s data work in concert to improve understanding
of geothermal potential. The resulting model might help identify high-potential sites (for leasing or further
study) much more effectively than conventional methods, because it leverages far more data than any
single entity possesses.

An example of employing FL for resource assessment in petroleum fields is demonstrated by Peng et al.
(2024). As an example for the vertical federated learning, an oil company and an exploration institute
collaborate to develop a machine learning model for predicting reservoir productivity. The oil company,
with access to labels and engineering data, acts as the active party, while the exploration institute,
possessing only geological features, serves as the passive client aiming to build its own predictive model.
The schematic of the workflow is presented in the paper, as shown in Figure 5.
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Figure 5. Workflow for an example of vertical federated learning for resource assessment in geoenergy systems (figure
adapted from Peng et al., 2024, arXiv:2404.18527)

Beyond this specific arrangement, horizontal FL could also be applied among companies themselves (if
multiple companies each have their own geophysical interpretations and drilling results, they could
horizontally aggregate a model without involving a third party). In fact, a regulator might encourage
several companies operating in the same basin to use FL to collectively de-risk exploration, improving the
overall success rate of geothermal projects in the region. Such a move could lower costs and accelerate
development of geothermal heating projects, aligning with policy goals, all while respecting competitive
boundaries through privacy-preserving ML.
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Challenges and Limitations

Despite the potential and added value of using data sharing through SMPC or federated learning
technologies in the geothermal sector, there are several limitations and challenges in deploying these
digital technologies. One significant challenge is data heterogeneity and inconsistency. Geothermal data
originates from a multitude of diverse sources, including drilling logs, seismic surveys, well tests, and
production data. This data often varies considerably in format, quality, and measurement units, which
makes standardization and integration across different datasets a challenging task. Complementing this,
data scarcity and proprietary nature pose a substantial hurdle. High-quality geothermal data, particularly
from deep wells, is not only scarce but also expensive to acquire. Companies frequently consider such
data proprietary, leading to a reluctance to share it, which in turn limits the scope for collaborative efforts.

Furthermore, confidentiality and security concerns are vital. Companies are understandably hesitant to
share sensitive operational data due to intellectual property concerns, the risk of competitive
disadvantages, and the ever-present threat of data breaches. This is compounded by a widespread lack of
standardized data governance in the sector, meaning there are often no common protocols, legal
frameworks, or ethical guidelines for data ownership, access, usage, and sharing among different
organizations. This absence of clear rules contributes to interoperability issues, making it difficult to
integrate data from various software platforms, sensors, and legacy systems that were not designed to
communicate with each other.

The technical complexity of FL or any data sharing implementation itself presents a challenge. Successfully
implementing FL requires specialized technical expertise, robust IT infrastructure, and handling of model
aggregation and privacy-preserving techniques to ensure data remains secure while insights are gained.
Building trust and collaboration gaps among competitors or different stakeholders (industry, academia,
government) is also crucial for successful data sharing and collaborative learning, but this often proves to
be a significant challenge.

For successful implementation of data sharing frameworks, ethical and operational considerations must
be carefully addressed to ensure effective and responsible use. One concern is the lack of clarity in how
decisions are made within data or model sharing frameworks. These models can be complex and difficult
for participants to fully understand, making it challenging to detect biases or assess model decisions. Even
with advanced predictive capabilities, the outcomes may not provide actionable insights for each
individual participant. In addition, shared datasets might not be representative of the entire geothermal
landscape, leading to biased models if certain geological settings or operational conditions are
underrepresented. To mitigate this, it is crucial to adopt practices that improve the explainability of the
models, allowing stakeholders to trust the process and results.

A critical concern in federated learning is the risk of untrustworthy participant behavior. Since FL involves
collaboration across multiple sites, there is the potential for individuals or organizations to manipulate or
falsify local data, or attempt to reverse-engineer shared parameters (adversarial attacks). Such actions
could severely compromise the integrity, fairness, and security of the entire system, especially in critical
infrastructure sectors like geothermal. To mitigate this, clear participation agreements, technical
safeguards (such as differential privacy, secure aggregation, and anomaly detection), and a robust
governance framework are essential. These should be accompanied by transparent auditing processes
and accountability mechanisms to ensure ethical compliance and build trust among stakeholders.

Moreover, model drift and generalizability need to be assessed. Geothermal reservoirs are highly site-
specific, meaning models trained on federated data might struggle with generalizability to new, unseen
sites if the underlying geological characteristics vary significantly. This is closely related to data bias and
skewness. As data originates from various geothermal sites, imbalances may arise, influencing model
outcomes. If certain participants are selectively included or data from some sites is overrepresented, it
could result in skewed or inaccurate models. Ensuring fair inclusion of all relevant parties in the
collaboration is crucial for minimizing bias and producing reliable models. The complex issue of attribution
and incentivization also needs to be addressed, as determining fair attribution for contributions to a
shared model and creating incentives for participation can be complex, especially when data sharing is
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not mandatory.

Ownership of shared data and/or trained models needs to be clarified at very early stage of the
development. When data is contributed to a shared pool or used to train a federated model, clarifying
who maintains ownership of the original shared data, the derived insights, and the resulting trained
models becomes crucial. Establishing clear intellectual property rights and usage agreements among all
participants is essential to prevent disputes and encourage participation in collaborative efforts.
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Conclusions and Outlook

Data sharing in the geothermal sector has the potential to revolutionize how insights are generated across
exploration, characterization, drilling, and operational stages. By enabling the aggregation of knowledge
from geographically diverse fields and systems, collaborative modeling (especially when enabled by
privacy-preserving frameworks like federated learning) can produce highly accurate and generalizable
models. These global models outperform those trained on isolated, site-specific datasets by capturing a
broader range of geological and operational scenarios. This leads to improved predictive capabilities,
allowing for better-informed decisions in resource assessment, maintenance planning, and operational
optimization, even for operators with limited data or underrepresented geological conditions. As
demonstrated, such global models are essential in bridging data silos and reducing the reliance on large
local datasets, particularly in mid- and low-enthalpy geothermal systems where project-specific data may
be sparse.

From the technological perspective, both Secure Multi-Party Computation and Federated Learning offer
valuable approaches to privacy-preserving data collaboration. However, given the distributed nature of
geothermal operations, the need for scalability, and the focus on model training rather than secure
computation, FL emerges as the more practical and suitable technique for the geothermal industry.

Moreover, federated learning enables this high level of model performance without compromising the
confidentiality of sensitive data, addressing one of the key barriers to collaboration in the industry.
Through decentralized training, stakeholders can jointly develop robust predictive tools while retaining
control over their proprietary datasets. This advances trust and facilitates wider participation,
encouraging innovation across the sector. The enhanced generalization capabilities of shared models
reduce uncertainties in geothermal development and operations, ultimately leading to increased
efficiency, reduced costs, and improved sustainability. As most of the sectors, including energy sector,
move towards more data-driven decision-making, the added value of data sharing will be a basis of future
competitiveness and resilience in geothermal energy systems.

The first step toward realizing the benefits of data sharing through federated learning is the establishment
of atrusted collaborative framework among stakeholders. This includes geothermal operators, equipment
manufacturers, research institutions, and regulators, all agreeing on a shared vision for secure and ethical
data collaboration. Key components of this framework should include standardized data formats, clear
governance protocols, participation agreements outlining data use and protection, and the deployment
of technical safeguards such as secure aggregation and anomaly detection. Pilot projects should be
launched to validate the framework in a controlled environment, demonstrating both the feasibility and
the benefits of federated learning in real-world geothermal contexts. These initial pilots will help build
confidence in the approach, refine governance mechanisms, and lay the groundwork for broader adoption
across the sector.
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